3.395 \(\int \sqrt{e \sec (c+d x)} \sqrt{a+i a \tan (c+d x)} \, dx\)

Optimal. Leaf size=323 \[ \frac{i \sqrt{2} \sqrt{a} \sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}-\frac{i \sqrt{2} \sqrt{a} \sqrt{e} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}-\frac{i \sqrt{a} \sqrt{e} \log \left (-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} d}+\frac{i \sqrt{a} \sqrt{e} \log \left (\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} d} \]

[Out]

(I*Sqrt[2]*Sqrt[a]*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x
]])])/d - (I*Sqrt[2]*Sqrt[a]*Sqrt[e]*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*S
ec[c + d*x]])])/d - (I*Sqrt[a]*Sqrt[e]*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec
[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*d) + (I*Sqrt[a]*Sqrt[e]*Log[a + (Sqrt[2]*Sqrt[a]*S
qrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.190769, antiderivative size = 323, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.233, Rules used = {3495, 297, 1162, 617, 204, 1165, 628} \[ \frac{i \sqrt{2} \sqrt{a} \sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}-\frac{i \sqrt{2} \sqrt{a} \sqrt{e} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}-\frac{i \sqrt{a} \sqrt{e} \log \left (-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} d}+\frac{i \sqrt{a} \sqrt{e} \log \left (\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(I*Sqrt[2]*Sqrt[a]*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x
]])])/d - (I*Sqrt[2]*Sqrt[a]*Sqrt[e]*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*S
ec[c + d*x]])])/d - (I*Sqrt[a]*Sqrt[e]*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec
[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*d) + (I*Sqrt[a]*Sqrt[e]*Log[a + (Sqrt[2]*Sqrt[a]*S
qrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*d)

Rule 3495

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-4*b*d^
2)/f, Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \sqrt{e \sec (c+d x)} \sqrt{a+i a \tan (c+d x)} \, dx &=-\frac{\left (4 i a e^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{a^2+e^2 x^4} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{d}\\ &=\frac{(2 i a e) \operatorname{Subst}\left (\int \frac{a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{d}-\frac{(2 i a e) \operatorname{Subst}\left (\int \frac{a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{d}\\ &=-\frac{(i a) \operatorname{Subst}\left (\int \frac{1}{\frac{a}{e}-\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}+x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{d}-\frac{(i a) \operatorname{Subst}\left (\int \frac{1}{\frac{a}{e}+\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}+x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{d}-\frac{\left (i \sqrt{a} \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt{a}}{\sqrt{e}}+2 x}{-\frac{a}{e}-\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}-x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{\sqrt{2} d}-\frac{\left (i \sqrt{a} \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt{a}}{\sqrt{e}}-2 x}{-\frac{a}{e}+\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}-x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{\sqrt{2} d}\\ &=-\frac{i \sqrt{a} \sqrt{e} \log \left (a-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} d}+\frac{i \sqrt{a} \sqrt{e} \log \left (a+\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} d}-\frac{\left (i \sqrt{2} \sqrt{a} \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}+\frac{\left (i \sqrt{2} \sqrt{a} \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}\\ &=\frac{i \sqrt{2} \sqrt{a} \sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}-\frac{i \sqrt{2} \sqrt{a} \sqrt{e} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{d}-\frac{i \sqrt{a} \sqrt{e} \log \left (a-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} d}+\frac{i \sqrt{a} \sqrt{e} \log \left (a+\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} d}\\ \end{align*}

Mathematica [A]  time = 0.930876, size = 289, normalized size = 0.89 \[ \frac{2 e \sqrt{\tan \left (\frac{d x}{2}\right )+i} \sqrt{a+i a \tan (c+d x)} \left (\sqrt{-\sin (c)+i \cos (c)-1} \sqrt{\sin (c)+i \cos (c)-1} \tan ^{-1}\left (\frac{\sqrt{\sin (c)-i \cos (c)-1} \sqrt{-\tan \left (\frac{d x}{2}\right )+i}}{\sqrt{\sin (c)+i \cos (c)-1} \sqrt{\tan \left (\frac{d x}{2}\right )+i}}\right )-\sqrt{-\sin (c)-i \cos (c)-1} \sqrt{\sin (c)-i \cos (c)-1} \tan ^{-1}\left (\frac{\sqrt{-\sin (c)+i \cos (c)-1} \sqrt{-\tan \left (\frac{d x}{2}\right )+i}}{\sqrt{-\sin (c)-i \cos (c)-1} \sqrt{\tan \left (\frac{d x}{2}\right )+i}}\right )\right )}{d \sqrt{-\sin (c)+i \cos (c)-1} \sqrt{\sin (c)-i \cos (c)-1} \sqrt{-\tan \left (\frac{d x}{2}\right )+i} \sqrt{e \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(2*e*(-(ArcTan[(Sqrt[-1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Ta
n[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[-1 - I*Cos[c] + Sin[c]]) + ArcTan[(Sqrt[-1 - I*Cos[c] + Sin[c]
]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 + I*Cos[c] - Sin[c]]*
Sqrt[-1 + I*Cos[c] + Sin[c]])*Sqrt[I + Tan[(d*x)/2]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[e*Sec[c + d*x]]*Sqrt[
-1 + I*Cos[c] - Sin[c]]*Sqrt[-1 - I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])

________________________________________________________________________________________

Maple [A]  time = 0.369, size = 225, normalized size = 0.7 \begin{align*}{\frac{\cos \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) -1 \right ) }{d\sin \left ( dx+c \right ) \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) }\sqrt{{\frac{e}{\cos \left ( dx+c \right ) }}}\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}} \left ( i{\it Artanh} \left ({\frac{\cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) }{2}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) -i{\it Artanh} \left ({\frac{\cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) }{2}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) +{\it Artanh} \left ({\frac{\cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) }{2}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) +{\it Artanh} \left ({\frac{\cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) }{2}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \right ){\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

1/d*(e/cos(d*x+c))^(1/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)*(cos(d*x+c)-1)*(I*arctanh(1
/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))-I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+si
n(d*x+c)))+arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))+arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2
)*(cos(d*x+c)+1+sin(d*x+c))))/sin(d*x+c)/(I*sin(d*x+c)+cos(d*x+c)-1)/(1/(cos(d*x+c)+1))^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 2.20927, size = 1890, normalized size = 5.85 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/4*(-2*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, sqrt(2)*si
n(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 2*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c))) + 1) - 2*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1,
 sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 2*I*sqrt(2)*arctan2(sqrt(2)*cos(1
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c))) + 1) - 2*sqrt(2)*arctan2(sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c))) + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))), sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2
*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 2*sqrt(2)*ar
ctan2(-sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(2/3*arctan2(sin(3/2*d*x + 3/
2*c), cos(3/2*d*x + 3/2*c))), -sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + I*sqrt(2)*log(2*sqrt(2)*sin(2/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*(sqrt(2)*c
os(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*cos(1/3*arctan2(sin(3/2*d
*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c),
cos(3/2*d*x + 3/2*c))) + 1) - I*sqrt(2)*log(-2*sqrt(2)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c)))*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x +
3/2*c), cos(3/2*d*x + 3/2*c))) - 1)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/
2*c)))^2 + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/
2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) +
 sqrt(2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x
+ 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) +
2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - sqrt(2)*log(2*cos(1/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^
2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + sqrt(2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin
(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c))) + 2) - sqrt(2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(s
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2))*sqrt(a)*sqrt(e)/d

________________________________________________________________________________________

Fricas [A]  time = 2.24456, size = 1172, normalized size = 3.63 \begin{align*} -\frac{1}{2} \, \sqrt{\frac{4 i \, a e}{d^{2}}} \log \left ({\left (2 \, \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac{3}{2} i \, d x + \frac{3}{2} i \, c\right )} + i \, d \sqrt{\frac{4 i \, a e}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) + \frac{1}{2} \, \sqrt{\frac{4 i \, a e}{d^{2}}} \log \left ({\left (2 \, \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac{3}{2} i \, d x + \frac{3}{2} i \, c\right )} - i \, d \sqrt{\frac{4 i \, a e}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) - \frac{1}{2} \, \sqrt{-\frac{4 i \, a e}{d^{2}}} \log \left ({\left (2 \, \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac{3}{2} i \, d x + \frac{3}{2} i \, c\right )} + i \, d \sqrt{-\frac{4 i \, a e}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) + \frac{1}{2} \, \sqrt{-\frac{4 i \, a e}{d^{2}}} \log \left ({\left (2 \, \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (\frac{3}{2} i \, d x + \frac{3}{2} i \, c\right )} - i \, d \sqrt{-\frac{4 i \, a e}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(4*I*a*e/d^2)*log((2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x
+ 2*I*c) + 1)*e^(3/2*I*d*x + 3/2*I*c) + I*d*sqrt(4*I*a*e/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)) + 1/2
*sqrt(4*I*a*e/d^2)*log((2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*
I*c) + 1)*e^(3/2*I*d*x + 3/2*I*c) - I*d*sqrt(4*I*a*e/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)) - 1/2*sqr
t(-4*I*a*e/d^2)*log((2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c
) + 1)*e^(3/2*I*d*x + 3/2*I*c) + I*d*sqrt(-4*I*a*e/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)) + 1/2*sqrt(
-4*I*a*e/d^2)*log((2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c)
+ 1)*e^(3/2*I*d*x + 3/2*I*c) - I*d*sqrt(-4*I*a*e/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )} \sqrt{e \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(1/2)*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(I*tan(c + d*x) + 1))*sqrt(e*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{e \sec \left (d x + c\right )} \sqrt{i \, a \tan \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*sec(d*x + c))*sqrt(I*a*tan(d*x + c) + a), x)